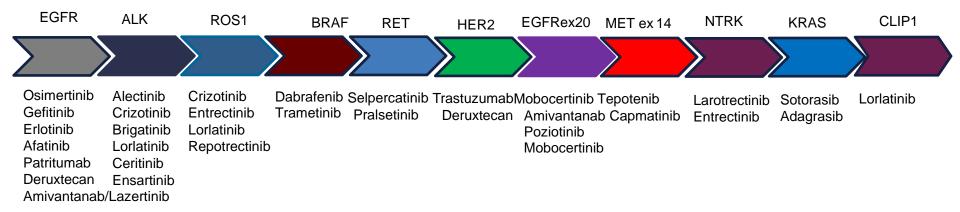
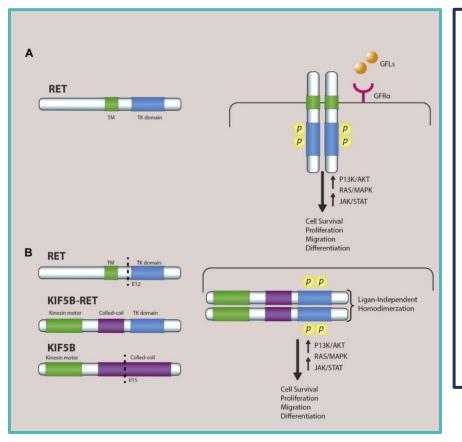
One tumour, many faces: Optimising testing, targeting and monitoring oncogene-addicted NSCLC beyond EGFR

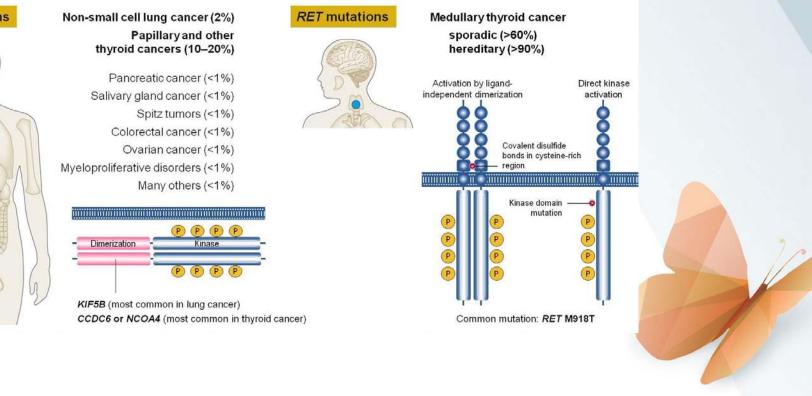
RET-fused NSCLC: State of the art treatment of advanced disease, including sanctuary sites


Vikas Talreja

Regency Hospital


Kanpur

Scenario in 2022

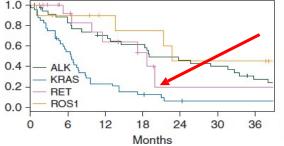

RET (REarranged during Transfection) gene

- Identified In 1985 as a novel transforming gene as result of transfection of the NIH 3T3 cell with high molecular weight DNA of a human T-cell lymphoma
- Maps on chromosome 10q11.2 and encodes a RTK consisting of three domains (extracellular, transmembrane domain and intracellular kinase)
- The primary RET ligands belong to the glial-derived neurotrophic factor (GDNF) family, including GDNF, artemin, neurturin, and persephin
- Ligand binding activates RET through the formation of homodimers and autophosphorylation of the kinase dom.
- Downstream pathways (RAS/MAPK/ERK, PI3K/AKT, and JAK/STAT) are associated with cellular proliferation, migration and differentiation
- RET is expressed in neurons, sympathetic and parasympathetic ganglia, thyroid C cells, adrenal medullary cells, urogenital tract cells, and testis germ cells
- Plays an important role in organogenesis and development of the enteric nervous system

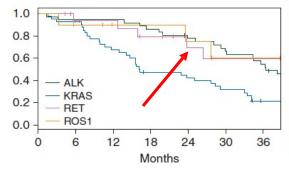
Takahashi et al, Cell 1985; Ferrara R et al. J Thorac Oncol 2017

RET activation in cancer

RET fusions



RET+ NSCLC: Clinical and pathological characteristics


- Median age < 60 years
- Never smokers
- Women
- Often metastatic at diagnosis also with a small primary
- Frequent brain mets
- Adenocarcinoma
- Radiological presentation: GGO, pneumonitis, multiple bilateral micronodules, pleural effusions
- Chemo-sensitive (platinum-pemetrexed)
- Poorly responsive to immunotherapy

RET+ NSCLC and chemotherapy

Overall survival

ALKISHOOT	SHL	<i>r</i>			
All		P<0.	.001		
NR: not reached					
	п	Median OS	(95% CI)		
RET	18	NR	(24-NR)		
ROS1	10	NR	(24-NR)		
ALK	ALK 36		(30-63)		
KRAS	40	16 mo	(14-33)		
KRAS vs ALK		P-C	0.001		
KRAS vs $ROS1$ $P=0.08$					
KRAS vs RET			0.004		
ALK vs ROS1 vs RET			0.43		
All		P<0	0.001		
NR: not reached	ł				

Median PFS

19 mo

23 mo

19 mo

6 mo

n

18

36

40

RET

ALK

KRAS

KRAS vs ALK

KRAS vs RET

KRAS vs ROS1

ALK VE BOST VE RET

(95% CI)

(12-NR)

(14-NR)

(15-36) (5-9)

P<0.001

P = 0.002

P = 0.005

P = 0.57

Patients	ORR (PR)	DCR (PR + SD)
RET-rearranged	45% (<i>n</i> = 5/11)	91% (<i>n</i> = 10/11)
ROS1-rearranged	78% (<i>n</i> = 7/9)	90% (n = 8/9)
ALK-rearranged	50% (n = 14/28)	93% (<i>n</i> = 26/28)
KRAS-mutant	26% (<i>n</i> = 9/35)	86% (<i>n</i> = 30/35)
P value	0.02	0.91

The overall response rate (ORR) and disease control rate (DCR) with pemetrexed-based systemic therapy in 83 patients with evaluable disease are summarized. These outcomes were compared between patient groups, with the *P* values reflecting an overall comparison of the four molecular subgroups listed. Only partial responses (PR) and no complete responses were observed. SD, stable disease.

Drilon, Ann Oncol 2016

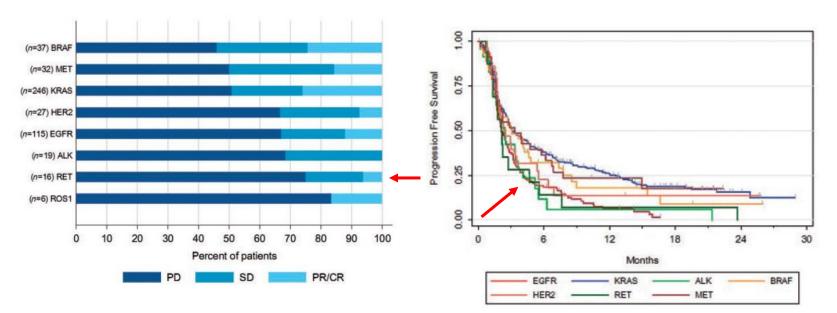

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Table 4. Clinical Outcomes With First-Line Chemotherapy					
Outcome	All Chemotherapy Agents (n = 108)	Platinum Doublet (n = 84)	Platinum + Pemetrexed (n = 66)		
Best response (95% CI)	52% (39.8 to 64.4) 36 of 69 evaluable	51% (38.1 to 63.4) 33 of 65 evaluable	49% (35.4 to 62.9) 27 of 55 evaluable		
Disease control rate (95% CI)	75% (63.5 to 84.9) 52 of 69 evaluable	75% (63.1 to 85.2) 49 of 65 evaluable	75% (61.0 to 85.3) 41 of 55 evaluable		
Median PFS (95% CI)	6.6 months (5.1 to 9.3)	7.8 months (5.3 to 10.2 months)	6.4 months (4.3 to 8.8 months)		
Median OS (95% CI)	23.6 months (13.6 to 30.8)	24.8 months (13.6 to 32.3 months)	23.6 months (13.4 to 33.2 months)		

NOTE. The best response, disease control rate, median PFS, and median OS of patients with advanced non-small-cell lung cancer and first-line chemotherapy are summarized.

Abbreviations: OS, overall survival; PFS, progression-free survival.

Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry

Mazieres, Ann Oncol'19

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Marina Chiara Garassino

Multi-TKIs in RET+ NSCLC

Drug	Phase	n.	Screening assays	ORR (%)	PFS (months)	mOS/1-year OS
Vandetanib ^{1,2,3}	II	19	RT-PCR/FISH	47	4.7	11.1 mo/47%
	II	18	RT-PCR/FISH	18	4.5	11.6 mo/33%
	Registry	11	RT- PCR/FISH/NGS#	18	2.9	10.2/NA
Cabozantinib ^{3,4}	II	26	FISH/NGS	28	5.5	9.9 mo/38%
	Registry	31	#	33	3.6	4.9 mo/NA
Lenvatinib ^{3,5}	II	25	FISH or RT- PCR/NGS	16	7.3	NR
	Registry	2	#	50	NA	NA
Sunitinib ³	Registry	10	#	22	2.2	6.8 mo/NA

¹Yoh K, Lancet Respir Med 2017; ²Lee SH, Ann Oncol 2017; ³Gautschi O, J Clin Oncol 2017; ⁴Drilon A, Lancet Oncol 2016; ⁵Hida T, Lung Cancer 2019;

NEW RET Tyrosine Kinase Inhibitors

- Pralsetinib (Blu-667)
- Selpercatinib (Loxo 292)

Pralsetinib versus Selpercatinib in NSCLC cell lines

Selectivity for VEGFR-2

Cellular activity against p-VEGFR-2 (IC₅₀, nM)

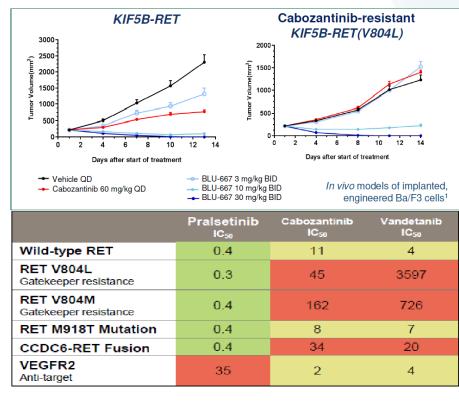
Anti-target	p-VEGFR-2
Pralsetinib	65 nM
Loxo-292	54 nM

Inhibition of gatekeeper mutations predicted to drive resistance

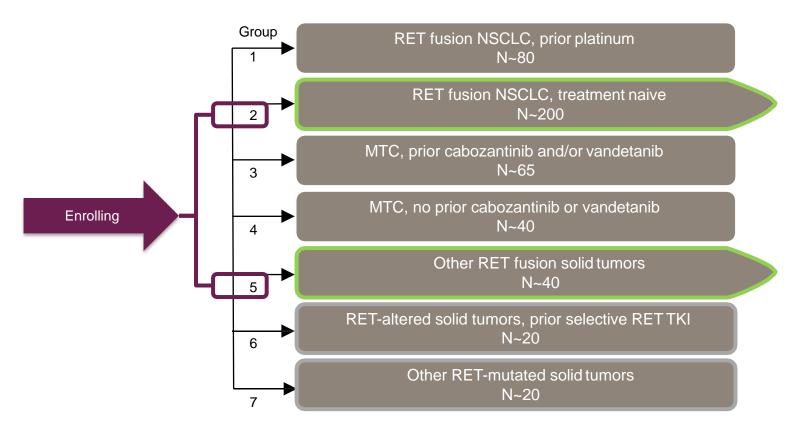
Cellular anti-proliferative activity against KIF5B-RET the most common RET fusion in NSCLC [IC50, nM (fold difference)]

Pralsetinib 10.1 nM (1x) 8.1 nM (0.8x) 14.1 nM (1.4x) 8.1 nM (0.8x)	RET fusion	KIF5B-RET	KIF5B-RET V804L	KIF5B-RET V804M	KIF5B-RET V804E
	Pralsetinib	10.1 nM (1x)	8.1 nM (0.8x)	14.1 nM (1.4x)	8.1 nM (0.8x)
Loxo-292 10.5 nM (1x) 28.4 nM (2.7x) 78.8 nM (7.5x) 126 nM (12x	Loxo-292	10.5 nM (1x)	28.4 nM (2.7x)	78.8 nM (7.5x)	126 nM (12x)

BLU-667: activity and tolerability in RET+ NSCLC

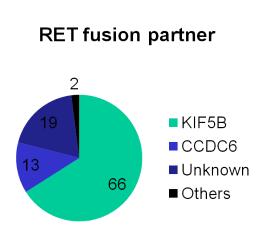


BLU-667: High kinome

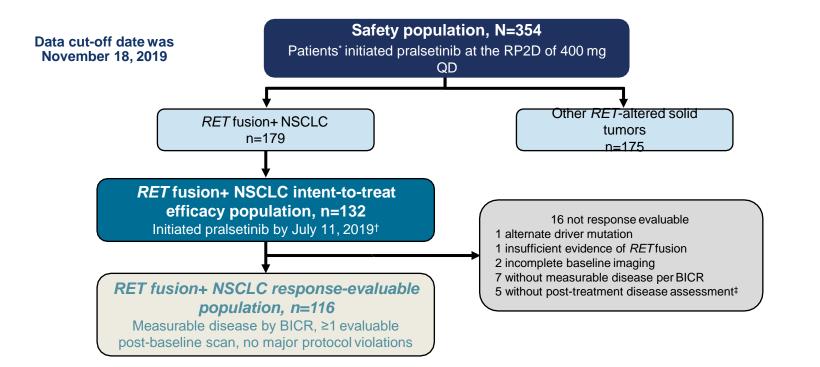

BLU-667 vs. pharmacologically relevant kinases:

- ~90-fold more selective for RET than VEGFR2
- 20-fold more selective for RET than JAK1

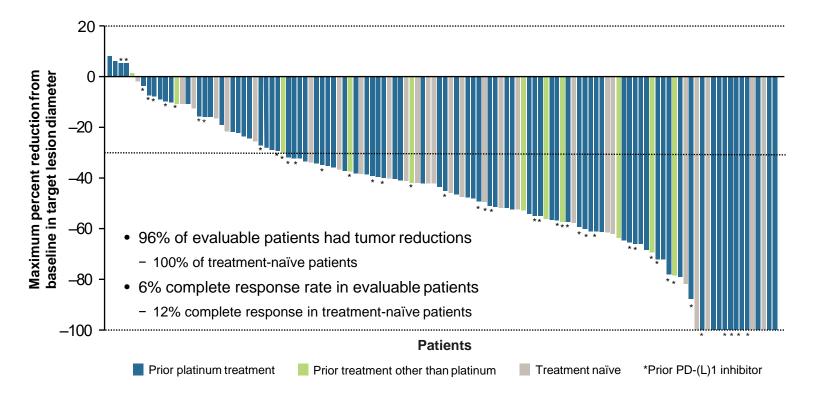
Subbiah V et al, Cancer Discov 2018


ARROW study progress Phase 2, dose-expansion, N~465, ongoing

Gainor J, Lancet Oncology 2021


Patient characteristics (NSCLC cohort)

	RET-Fusion+ Advanced NSCLC 400 mg QD Starting Dose		
Characteristic	All (N=120)	Prior Platinum (N=91)	
Age (years), median (range)	60 (28-87)	60 (28-85)	
Male, n (%)	59 (49)	45 (49)	
ECOG PS, n (%)			
0	46 (38)	33 (36)	
1-2	74 (62)	58 (64)	
Brain metastases, n (%)	48 (40)	36 (40)	
Prior systemic regimens, median (range)	2 (0-11)	2 (1-11)	
Any prior anticancer treatment	101 (84)	91 (100)	
Chemotherapy, n (%)	92 (77)	91(100)	
PD-1 or PD-L1 inhibitor, n (%)	47 (39)	41 (45)	
Chemotherapy + PD-(L)1 combination, n (%)	41 (34)	41 (45)	
Multikinase inhibitor, n (%)	21 (18)	20 (22)	
Smoking history ^a		1543.015	
Current/Prior	41 (34)	33 (36)	
Never	78 (65)	57 (63)	
Histology			
Adenocarcinoma	114 (95)	87 (96)	
Other	6 (5)	4 (4)	

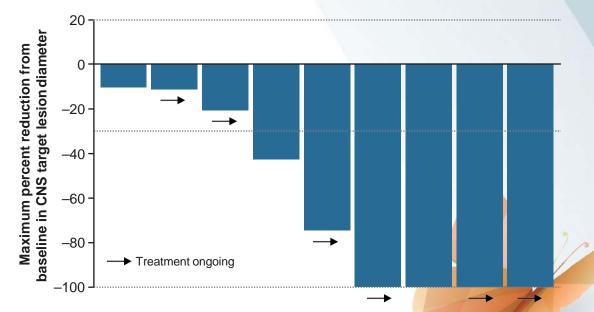


ARROW: Patient disposition/analysis population

Gainor J, Lancet Oncology 2021

ARROW: Tumor shrinkage (Blinded Independent Centralized Review) RET Fusion Positive NSCLC (400mg starting dose)

Gainor J, Lancet Oncology 2021


Safety and efficacy of pralsetinib in NSCLC: Update Arrow

Key results

			Treatment naïve			atment
	RET fusion+ NSCLC (n=216)	All (n=68)	Pre-eligibility revision (n=43)	Post eligibility revision (n=25)	Prior platinum (n=126)	Prior non- platinum (n=22)
ORR, % (95%CI)	69 (62, 75)	79 (68, 88)	74 (59, 87)	88 (69, 98)	62 (53, 70)	73 (50, 89)
BOR, n (%) CR PR SD PD NE DCR, % (95%CI)	9 (4) 139 (64) 50 (23) 10 (5) 8 (4) 92 (87, 95)	4 (6) 50 (74) 9 (13) 3 (4) 2 (3) 93 (84, 98)	4 (9) 28 (65) 7 (16) 3 (7) 1 (2) 91 (78, 97)	0 (0) 22 (88) 2 (8) 0 (0) 1 (4) 96 (80, 100)	5 (4) 73 (58) 37 (29) 5 (4) 6 (5) 91 (85, 96)	0 (0) 16 (73) 4 (18) 2 (9) 0 (0) 91 (71, 99)
CBR, % (95%CI)	77 (71, 82)	82 (71, 91)	79 (64, 90)	88 (69, 98)	74 (65, 81)	77 (55, 92)
Median DoR, months (95%CI)	22.3 (15.1, NR)	NR (9.0, NR)	11.0 (7.4, NR)	NR (NR, NR)	22.3 (15.1, NR)	NR (9.2, NR)
mPFS, months (95%CI)	16.4 (11.0, 24.1) n=233	13.0 (9.1, NR) n=75	10.9 (7.7, NR) n=47	NR (NR, NR) n=28	16.5 (10.5, 24.1) n=136	12.8 (9.1, NR) n=22

ARROW: CNS activity (Blinded Independent Centralized Review) RET Fusion Positive NSCLC (400mg starting dose)

- Intracranial overall response rate in 9 patients with measurable CNS metastases at baseline was 56%
- Three patients (33%) with intracranial complete response

ARROW: CNS activity (Blinded Independent Centralized Review) RET Fusion Positive NSCLC (400mg starting dose)

Baseline

After 8 months

- 71 year-old female previous smoker with *RET-CCDC6* fusion-positive metastatic NSCLC
- No response and disease progression at 6 months on prior pembrolizumab monotherapy
- Metastatic disease in brain, bone, adrenal gland, and lymph nodes at studyentry
- Complete resolution of a 12.6 mm brain target lesion observed at 1.6 months on pralsetinib
- As of May 1, 2020, continues pralsetinib for 10+ months with ongoing overall partial response

Courtesy of G. Curigliano

ARROW: Safety All ARROW patients (400 mg starting dose)

- Pralsetinib 400 mg QD had a treatment duration between 0.1- 22.3 months and median (range) dose intensity of 92% (18–100)
- Only 4% of patients discontinued due to treatment-related adverse events

Treatment-related adverse events in ≥10% of patients		tients 354)*
AE preferred term	Any grade	Grade ≥3
AST increased	31	2
Anemia	22	8
ALT increased	21	1
Constipation	21	1
Hypertension	20	10
Neutropenia	19	10
Diarrhea	14	1
White blood cell count decreased	14	3
Dysgeusia	13	0
Blood creatinine increased	12	0
Fatigue	12	1
Neutrophil count decreased	12	4
Dry mouth	11	0
Hyperphosphatemia	11	<1
Asthenia	10	1

AcceleRET Phase 3 Study Design

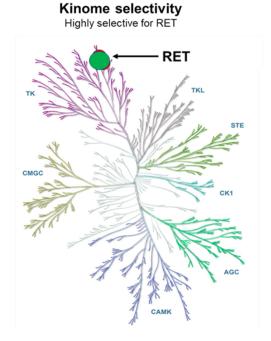
R

1:1

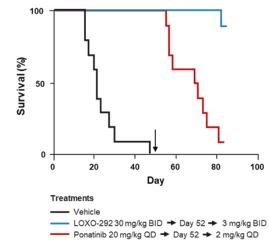
- Metastatic
 NSCLC
- No prior systemic treatment
- Open Label
- N=250

Optional crossover upon Progressive Disease

Arm B: Investigator Choice Platinum-based Chemotherapy (125 patients)

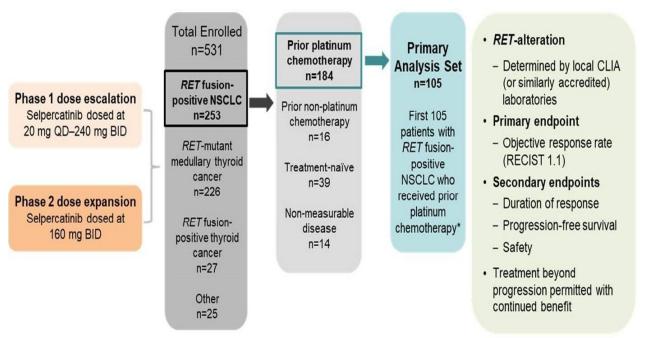

- Investigator's choice includes:
 - (1) Non-Squamous histology: Carboplatin or cisplatin / pemetrexed (with opt. pemetrexed maintenance)
 - Investigator's choice as above with pembrolizumab
 - (2) Squamous histology: carboplatin or cisplatin / gemcitabine

Primary Endpoint : Progression Free Survival (PFS) Key Secondary Endpoints : Overall Response Rate (ORR), CNS ORR, Overall Survival (OS), and Safety


Selpercatinib* (LOXO-292) is a Potent and Selective RET Inhibitor

Xenograft models

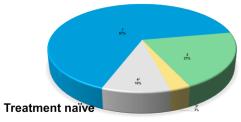
Multiple fusions/mutations/histologies 1000 500 Change in tumor size (%) 100 50 0 -50 -100 0 LOXO-292 Vehicle Cabo Treatment Tumor models KIF5B-RET (PDX-NSCLC) CCDC6-RET (PDX-CRCA) CCDC6-RET-V804M (PDX-CRCA) KIF5B-RET (NIH-3T3) KIF5B-RET-V804M (NIH-3T3) RET C634W (TT cell line-MTC) CCDC6-RET (LC-2/ad cell line-NSCLC)


Orthotopic brain model CCDC6-RET orthotopic brain PDX

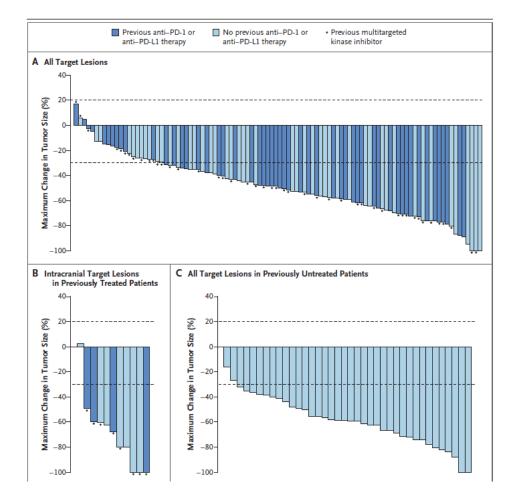
Subbiah V, et al. Ann Oncol. 2018;29:1869-1876. "PINN, pending USAN approva

Subbiah V et al, Ann Oncol 2018

LIBRETTO-001: Selpercatinib in RET-altered cancers

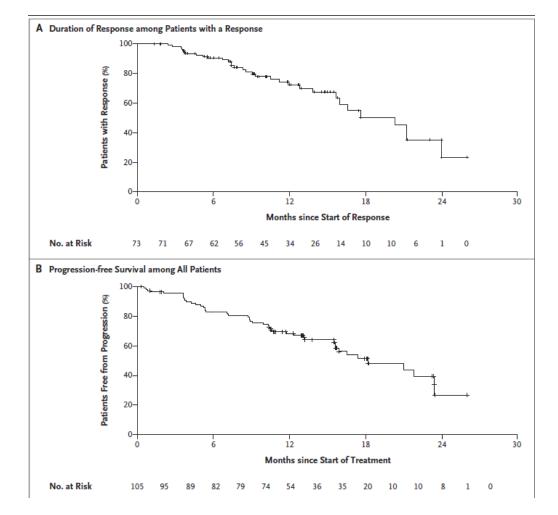

Drilon A et al, NEJM 2020

Baseline Patient


har	Character tic F(-) unle s	Prior Platinum-based Chemotherapy (n=105)	Treatment Naïve (n=39)
	Age, median (range), years	61 (23–81)	61 (23–86)
	Sex Female Male	62 (59) 43 (41)	22 (56) 17 (44)
	Race White Asian Black or African American Other Missing	55 (52) 40 (38) 5 (5) 3 (3) 2 (2)	28 (72) 7 (18) 3 (8) 1 (3) 0
	Smoking status Never smoker Former smoker Current smoker	75 (71) 29 (28) 1 (1)	29 (74) 9 (23) 1 (3)
	ECOG performance status 0 1 2	31 (30) 72 (69) 2 (2)	18 (46) 21 (54) 0
	NSCLC histological subtype Adenocarcinoma Large cell neuroendocrine carcinoma Squamous cell carcinoma Not otherwise specified	90 (86) 2 (2) 1 (1) 12 (11)	34 (87) 0 5 (13)
	Prior systemic regimens, median (range)	3 (1–15)	0
	Prior platinum-based chemotherapy	105 (100)	-
	Prior anti-PD-1/PD-L1 therapy	58 (55)	-
	Prior multitargeted kinase inhibitor* 1 ≥2	50 (48) 37 (74) 13 (26)	-
	Brain metastases	38 (36)	7 (18)
	Measurable disease	104 (99)	39 (100)

RET Gene Fusion

*Multitargeted kinase inhibitors (MKIs) administered included cabozantinib (16 patients), vandetanib (8), lenvatinib (7), and others (36). Patients may have received more than one MKI. 'Tother fusions identified in single tumors included *CLIP1-RET, RBPMS-RET* and *DOCK1-RET, ARHGAP12-RET, CCDC88C-RET, TRIM24-RET, PRKAR1A-RET* and *ERC1-RET.* ‡*RET* fusion indicated by molecular analysis but fusion partner not identified. Eastern Cooperative Oncology Group (ECOG) performance status scores range from 0 to 5, with higher scores indicating greater disability. Total % may be different than the sum of the individual components due to rounding. Abbreviations: NSCLC, non-small-cell lung cancer.



The NEW ENGLAND JOURNAL of MEDICINE

Efficacy of Selpercatinib in RET Fusion–Positive Non–Small-Cell Lung Cancer

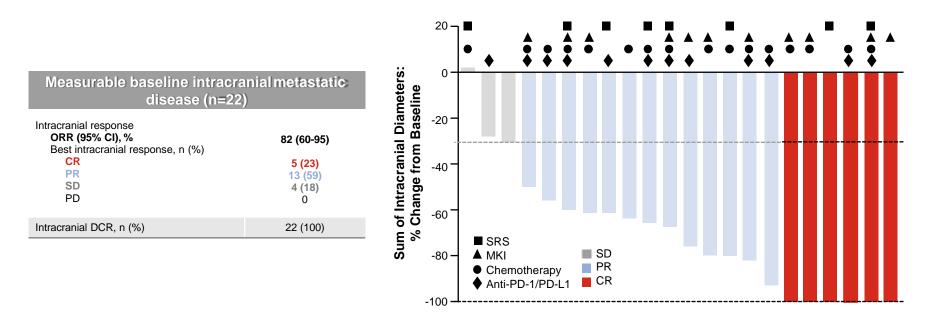
A. Drilon, G.R. Oxnard, D.S.W. Tan, H.H.F. Loong, M. Johnson, J. Gainor, C.E. McCoach, O. Gautschi, B. Besse, B.C. Cho, N. Peled, J. Weiss, Y.-J. Kim, Y. Ohe, M. Nishio, K. Park, J. Patel, T. Seto, T. Sakamoto, E. Rosen, M.H. Shah, F. Barlesi, P.A. Cassier, L. Bazhenova, F. De Braud, E. Garralda, V. Velchti, M. Satouchi, K. Ohashi, N.A. Pennell, K.L. Reckamp, G.K. Dy, J. Wolf, B. Solomon, G. Falchook, K. Ebata, M. Nguyen, B. Nair, E.Y. Zhu, L. Yang, X. Huang, E. Olek, S.M. Rothenberg, K. Goto, and V. Subbiah

	Pre-treated # 105	Untreated # 39	
OR # (%)	67 (64)	33 (85)	
mDOR (mo)	17.5	NE	
Time to OR (mo)	1.8		
CNS OR% (#11)	91		

The NEW ENGLAND JOURNAL of MEDICINE

AUGUST 27, 2020

VOL. 383 NO. 9


ESTABLISHED IN 1812

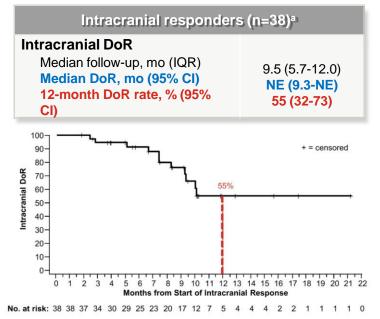
Efficacy of Selpercatinib in RET Fusion–Positive Non–Small-Cell Lung Cancer

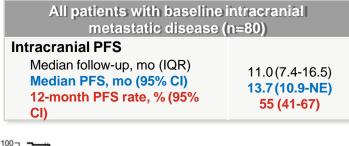
A. Drilon, G.R. Oxnard, D.S.W. Tan, H.H.F. Loong, M. Johnson, J. Gainor, C.E. McCoach, O. Gautschi, B. Besse, B.C. Cho, N. Peled, J. Weiss, Y.-J. Kim, Y. Ohe, M. Nishio, K. Park, J. Patel, T. Seto, T. Sakamoto, E. Rosen, M.H. Shah, F. Barlesi, P.A. Cassier, L. Bazhenova, F. De Braud, E. Garralda, V. Velchti, M. Satouchi, K. Ohashi, N.A. Pennell, K.L. Reckamp, G.K. Dy, J. Wolf, B. Solomon, G. Falchook, K. Ebata, M. Nguyen, B. Nair, E.Y. Zhu, L. Yang, X. Huang, E. Olek, S.M. Rothenberg, K. Goto, and V. Subbiah

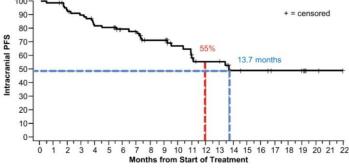
	All patients # 105
1Y PFS	66 %
mPFS (mo)	16.5

Intracranial Responses were Observed Across a Variety of Prior Treatment Histories

Intracranial Responses Occurred Regardless of Prior Cranial Radiotherapy in Patients with Measurable Disease


	Measurable baseline intracranial metastatic disease(n=2						
	All patients (n=22)	Patients without prior intracranial radiotherapy (n=14)	Patients with prior intracranial radiotherapy (n=8)ª				
Intracranial response							
ORR, n (%)	18 (82)	12 (86)	6 (75)				
95% CI	60-95	57-98	35-97				
Best intracranial response, n (%)							
CR	5 (23)	4 (29)	1 (13)				
PR	13 (59)	8 (57)	5 (63)				
SD	4 (18)	2 (14)	2 (25)				
PD	0	0	0				


 Intracranial responses, including CRs, occurred regardless of prior history of cranial radiotherapy in patients with measurable baseline intracranial metastatic disease

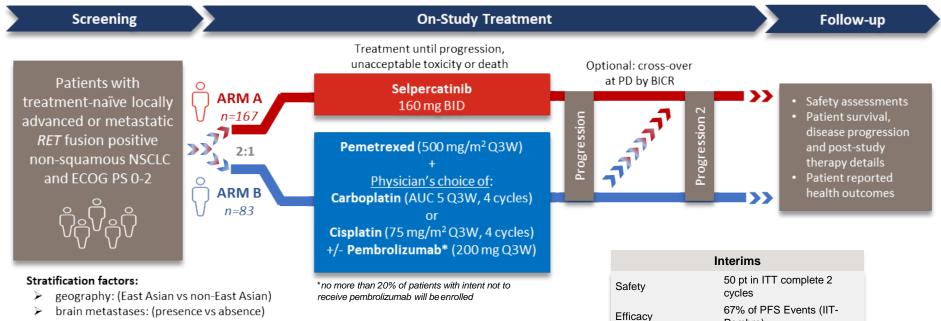

Subbiah V, et al. Clin Cancer Res 2021; 27(15):4160-4167.

Intracranial Duration of Response and PFS

- There were a total of 38 intracranial responders
 - 18 patients with measurable baseline intracranial metastatic disease who achieved CR or PR
 - 20 patients with nonmeasurable baseline intracranial metastatic disease who achieved CR
- At 1-year, 55% of intracranial responses were ongoing
- The median PFS is immature due to limited follow-up time and limited number of events

No. at risk: 80 79 72 69 62 61 52 50 38 38 30 26 21 21 11 10 10 8 8 7 2 1 0

Safety profile


+ Hypersensitivity reactions 7% Mc Coach, JTO 2021

	LIBRETTO-001 Safety Database, n=531									
	Treatment-emergent AEs (≥15% overall)					Treatment-related AEs				
	Grade 1	Grade 2	Grade 3	Grade 4	Total	Grade 3	Grade 4	Total		
Dry mouth	29%	4%	_		32%	н	-	27%		
Diarrhea	21%	8%	2%		31%	1%	—	16%		
Hypertension	4%	11%	14%	<1%	29%	8%	<1%	18%		
Increased AST	17%	5%	6%	1%	28%	4%	1%	22%		
Increased ALT	13%	4%	7%	1%	26%	6%	1%	21%		
Fatigue	15%	9%	1%	-	24%	<1%	-	14%		
Constipation	19%	3%	<1%	-	22%	<1%	-	11%		
Headache	15%	4%	1%	-	20%	<1%	-	7%		
Nausea	15%	4%	<1%	-	19%	<1%	-	8%		
Peripheral edema	16%	4%	<1%		19%	-	()1	10%		
Increased creatinine	14%	4%	_	<1%	18%	-	H-	10%		

9 patients (1.7%) discontinued due to treatment-related AEs

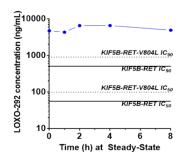
Drilon A et al, WCLC 2019


LIBRETTO 431 - Study Design

Pembro)

intended treatment (Arm B) (+/- pembrolizumab)

Escape mechanisms to rearranged during transfection protooncogene (RET) inhibition


Overcoming Acquired RET Gatekeeper Resistance

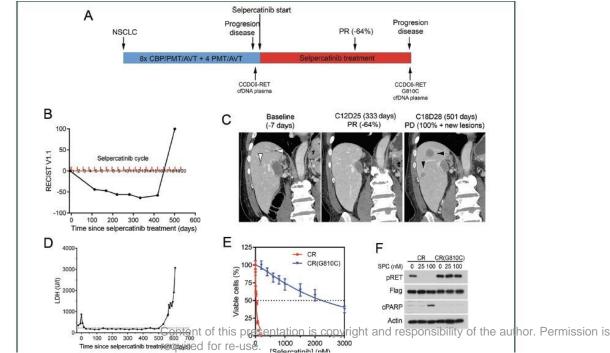

Selpercatinib Overcomes Acquired Gatekeeper Resistance

42-year-old woman with *KIF5B-RET* fusion-positive NSCLC

- 15 prior systemic therapy regimens
 - chemotherapy, immunotherapy, and investigational kinase inhibitors
- Acquired RET V804L gatekeeper mutation post-vandetanib therapy

Initiated selpercatinib at 160 mg BID

Decreased shortness of breath Confirmed PR by RECIST 1.1 Remains on treatment at 11 months


Data cut-off: June 17th, 2019; Wirthet al, JCO Precision Oncology, In Press. Images courtesy of K. Goto.

ORIGINAL ARTICLE

Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations

V. Subbiah^{1+†}, T. Shen^{2,3†}, S. S. Terzyan^{4,5†}, X. Liu^{2,3†}, X. Hu^{2,3}, K. P. Patel⁶, M. Hu⁷, M. Cabanillas⁷, A. Behrang⁸, F. Meric-Bernstam¹, P. T. T. Vo², B. H. M. Mooers^{2,4,5*} & J. Wu^{2,3*}

¹Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston; ²Peggy and Charles Stephenson Cancer Center; Departments of ³Pathology; ⁴Biochemistry and Molecular Biology; and ⁵Laboratory of Biomolecular Structure and Function, University of Oklahoma Health Sciences Center, Oklahoma City, ⁶Molecular Diagnostics Laboratory; ⁷Endocrine and Neoplasia; and ⁸Musculoskeletal Imaging, Division of Diagnostic Imaging, the University of Texas MD Anderson Cancer Center, Houston, USA

Conclusions

- RET fusions are driver alterations in 1-3% NSCLC (mutations are in thyroid ca)
- More frequent in non smokers and with younger age
- Poorly responsive to immunotherapy
- Selpercatinib and Pralsetinib are RET TKIs with remarkable and long lasting activity
- Demonstrated anti-cranial activity
- Toxicity is mild (of note hypertension and hypersensitivity reactions)
- Mechanisms of resistance are almost unknown (gatekeeper and non gatekeeper)
 TEST TEST TEST